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Abstract 
 

We apply force-directed graph drawing techniques to the 
floorplanning process of computer chip design, which is 
essentially a problem of fitting interconnected rectangles into 
a prescribed region without overlap.  We adapt the force-
directed graph drawing techniques to accommodate the 
rectangular vertices representing chip components by 
developing a physical model that allows the components to 
‘pass through’ each other and to adjust their aspect ratios as 
needed while approaching a solution. We provide the 
underlying mathematics and some preliminary output from a 
prototype program based on our heuristics. 
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Introduction 
 

A major component of computer chip design consists of generating a netlist 
layout, i.e. determining where to place the gates (functional elements) and how 
to route the wires (connections between gates) when manufacturing a chip.  We 
present a physically motivated graph theoretical model for floorplanning, an 
early step in this process.  During the physical design of the chip, the 
floorplanning step determines a rough high-level grouping and placement of 
related gates within the chip area.  We assume the first part, grouping related 
gates into larger blocks with fixed area, has been accomplished, and consider the 
question of arranging the interconnected blocks into a fixed rectangular region 
(the chip area).   
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A netlist is the logical description of the function(s) of a computer chip.  
The netlist describes functional elements (often basic Boolean operators like 
AND and NOT) and the interconnections between them.  It specifies the pins, 
the partition of the pins into operating units of fixed size called gates, a second 
partition of the pins corresponding to interconnections or signals (which 
translate physically to wires), and lastly, for each pair of pins a maximum delay, 
represented by limits on the lengths of the wires. 

Given a netlist, the goal is to design a layout that provides a geometric 
realization of the logical circuit from which the chip is actually manufactured.  
For large chips, the layout process currently consists of three separate but 
closely related problems.  The first is floorplanning, where a floorplan is a rough 
high-level grouping and placement of related gates within the chip area. The 
floorplan can be viewed as a rough map of where major subsections of the 
netlist should be placed relative to the chip edge for connection to the “outside 
world”, and relative to each other, for performance reasons. The second is the 
specific placement of the gates on the placement (bottommost) layer so that the 
gates do not overlap. The gates are placed in as compact a fashion as possible, 
and the placement minimizes the distance between gates connected together by 
wires.  The third is a rectilinear routing of the wires in the wiring space 
(successive layers above the gate placement layer providing alternating 
horizontal and vertical channels in which to place wires), so that the distances 
between every pair of pins in the same signal are less than their delays and so 
that the set of wires is pair-wise disjoint (topologically).  See Figures 1 and 2.  
Since many aspects of these processes are known to be NP-Hard, the overall 
problem realistically becomes finding reasonable heuristics for generating good 
layouts.  A comprehensive introduction to chip design is given in [Len90], and 
an overview of graph theoretic techniques in network design can be found in 
[Cac89]. 

The placement and wiring problems are very closely connected, as a poor 
placement can dramatically affect the difficulty in finding a satisfactory routing 
solution. The floorplanning step provides global guidance for the placement and 
routing steps, anticipating the challenges facing the placement and wiring 
algorithms. Thus, a high quality floorplan can be very effective in reducing the 
difficulty of the placement and wiring challenges. However, as the floorplan 
must anticipate many aspects of the detailed implementation, generating a 
floorplan (especially by hand) can be very time consuming.  

Due to the highly competitive nature of the microelectronics industry, there 
is strong interest in heuristics that may shorten the chip design cycle by 
effectively automating the floorplannning process, and improving the floorplan 
quality.  Heuristics that better integrate the three processes of floorplanning, 
placement, and routing, have recently led to improvements in the layout process.  
This approach has been taken in [CCPY00], one of the trailblazers in the 
relatively new idea of considering the signal delays during the floorplanning 
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process.  By moving optimization techniques usually not implemented until the 
routing stage into the floorplanning process, they were able to achieve 
significant improvement in delay reduction for their test case.  Similarly, 
[VC04], [MTB00], [CCPY00] and [EJ98] have achieved notable improvements 
in automated layout by using force-directed methods.   

 

  
However, one of the critical considerations involved in using force-directed 

methods is preventing overlap of the blocks. The novelty of our approach lies in 
our handling of preventing block overlap and reshaping blocks dynamically as 
the system nears a solution.  As in other recent force-directed layout algorithms, 
we model signal delays with spring forces along edges, thus simultaneously 
addressing both routing and placement in the floorplanning process.  However, 
we considerably modify force-directed graph drawing techniques by developing 

Figure 2.  The wiring space, 
showing the placement  layer 
on the bottom and two wiring 
layers above. 

Gate              Pin             Wire 

 
Figure 1.  Expanded 
view of chip 
components (gates 
actually abut, with wires 
on metal layers above 
the gates). 
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a physical model that allows the vertex blocks to ‘pass through’ each other and 
to adjust aspect ratios as needed while approaching a solution. 

 
 

A Force-Directed Floorplanning Approach 

 The floorplanning phase uses the logical design of the chip to grossly 
partition the netlist into about ten to fifty blocks (see Figure 3).  Here we see a 
tree denoting the major sub-blocks of the total netlist (CHIP_TOP). Each major 
sub-block may contain simply gate level elements (e.g. MAC), or other sub-
blocks (e.g. DSP) or both sub-blocks and gates (not shown). Each of these sub-
blocks will have fixed area, since each contains a given number of individual 
gates (transiently), each with fixed physical dimension.  However, the aspect 
ratios of these blocks are malleable as long as the area stays constant and the 
rectangle aspect ratios stay within given bounds.  The connections among the 
blocks derive from the gates they contain, and thus the blocks are typically 
highly interconnected. Figure 4 shows a potential floorplan of the netlist in 
Figure 3. Note that not every level of the hierarchy in the netlist tree is 
represented in the floorplan – the choice of which sub-block in the hierarchy to 
plan for in the floorplan depends on many variables, and is outside the scope of 
our discussion. We assume that a good selection of the sub-blocks has been 
provided for the floorplan. 

 
Figure 3. Grouping of components in the logic hierarchy of the netlist. 
 

CACHE 

CHIP_TOP

MAC DSP MEM_CTL

MEM LOGIC

ALU DISPACC
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Figure 4. A floorplan  (interconnections not shown). 
 

Graphs and hypergraphs are natural mathematical objects for modeling 
netlists during the different stages of the layout process.  During the 
floorplanning stage, the nodes of the graph represent the blocks and the edges 
the connections between blocks implied by the wires.  Eades [E84] first 
suggested a spring embedding algorithm in which the vertices and edges are 
veiwed as masses and springs and thus subjected to physical force laws modeled 
on Hooke’s law and electrical repulsion equations.  The algorithm calculates the 
forces acting on each mass and adjusts each node’s position accordingly, then 
repeats this process iteratively. The system as a whole eventually stabilizes in a 
configuration that minimizes the energy of the springs (at least locally).   

This approach has been explored by [VC04], [MTB00], [CCPY00] and 
[EJ98] for various aspects of netlist layout.  However, the difficulty comes from 
the fact that for floorplanning, as in other layout processes, the nodes have 
physical dimensions and may not overlap.  This usually prevents the nodes from 
being able to occupy the position determined by a simple spring embedding 
algorithm.  Various approaches, from bin packing in [MTB00] to congestion-
based repulsive forces in [EJ98], have been used to address the problem of 
preventing overlapping.  We have chosen to work directly with the blocks as 
physical objects, in part because of the need for a floorplanning model to 
incorporate the malleability of these floorplan blocks. 

In addition to the blocks, which have an area, our model includes two other 
types of vertices, both of which are dimensionless.  One type represents the 
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signals among the blocks.  These interconnections among the blocks are actually 
hyperedges, involving sets of blocks rather than simply pairs.  As do, for 
example [MBT00] and [VC04], we model these hyperedges by claws (K1,n 
graphs), creating an artificial vertex for each claw, as in Figure 5.  Like [VC04], 
we use cliques instead of claws for hyperedges of size two or three to reduce the 
number of computations.  The other kind of vertex occurs along the perimeter of 
the layout area and represents a connection between a block and the edge of the 
chip.  

 
As in general spring embedding algorithms, at the core of our algorithm is 

an iterative process that repeatedly computes attractive and repulsive forces.  
Our use of both local and global temperatures to control oscillation and force the 
system to converge to a solution, as well as our spring force computations, are 
fairly standard.  However, we modify the repulsive forces between blocks in 
three ways.  First, the blocks repel from a rectangular perimeter rather than a 
dimensionless point, and only repel to this perimeter rather than simply using an 
inverse square law.  Second, this repelling perimeter grows outward from the 
center of the block as the algorithm progresses, beginning very small, and then 
eventually encompassing the given area of the block.  This allows the blocks to 
pass through one another other early in the algorithm as the system grossly 
positions the components, but prevents blocks from overlapping as the system 
nears stability. We refer to this perimeter as the effective  width and height of the 
block.  Thirdly, we compute boundary pressures (depth of penetration by 
neighboring blocks) for each block, and then adjust the aspect ratio of the block 
to equalize these pressures, thus allowing blocks to find good shapes as well as 
positions in the final floorplan. 

Since we assume the gates have previously been grouped into blocks, our 
input consists of: 
• the rectangular chip layout area,  
• the given blocks of related chip components,  
• the areas of these blocks,  
• information about how the blocks are connected among themselves and to 

the perimeter of the layout area,  
• delay constraints on the interconnections.  

Figure 5.  A signal (dotted 
lines) modeled by a claw 
on an artificial vertex. 
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 The principal components of our algorithm, discussed in detail below, are: 
• the temperature, 
• the spring equations on the signal edges, 
• the repulsion equations on the blocks, 
• the pressure equalization equations to reshape overlapping blocks. 

The output is a floorplan, that is an arrangement of the blocks in the layout 
area so that the blocks do not overlap and so that connected blocks with short 
delays are placed near one another. 

 

Temperature 

Temperature works both locally and globally to ensure termination of 
the algorithm.  We increase or decrease a temperature variable associated to 
each individual block or vertex based on its prior movement. We detect 
oscillation by comparing the direction of the vertex’s movement with its last 
recorded movement direction.  If the difference is greater than 90 degrees, we 
decrease the temperature of the vertex and slow its movement to damp any 
oscillation.  Otherwise, we assume the vertex is moving toward a better position, 
so we increase its temperature and hence speed its movement toward that 
position.  We also globally decrement the temperature variables throughout a 
run, slowly cooling the system as a whole, and thus forcing a final stable state. 

 

Spring Forces 

We apply attractive forces modeled on spring equations along the edges 
representing connections between components, where a component may be a 
block or one of the two types of special vertices.  Given an edge (u, v) between a 
component u with center ( ),u ux y  and a component v with center ( ),v vx y , 
equation (1.1) describes the impulse of xu (the x-coordinate of the center point of 
component u) to change due to the influence of edge (u,v): 

 

(1.1) ( ) v u u
uv uv uv

uv

x x TS W d l
d T
−

⋅ − ⋅ ⋅ , where 

 
 
• S is a global spring stiffness parameter, 
• Wuv is an edge springiness parameter determined by the timing constraints in 

the netlist, 
• duv  is the Euclidean distance between the centers, 
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• luv is the ideal length of the spring between u and v, determined by the timing 
constraints in the netlist and the effective dimensions of the blocks, 

• Tu is the local temperature of u, 
• T is a global maximum temperature. 
 

We then sum over all edges incident with u to find the new value of xu and 
compute the new value of yu analogously, thus setting the new position of 
component u for the next iteration.  We handle the special case when u and v are 
both blocks a little differently.  In the case that the blocks are offset more 
horizontally, we replace duv by the difference in the x coordinates, and luv by the 
average effective width, and simply increment vertically by half the difference 
in the y coordinates, treating the case of greater vertical offset analogously. 
 

Determining reasonable values of Wuv and luv for each edge from the raw 
netlist data is a separate and very challenging problem in its own right.  
Therefore, following common practice, we currently set these values globally, 
with SWuv  always equal to one and with luv equal one of the average effective 
height or width of u and v, or else very near zero.  We then simply seek to 
minimize the total wire lengths in the final solution.  We retain the parameter S 
as a control variable for future implementation combining the current work with 
a genetic algorithm.  

 

Repulsion Forces Among Blocks 

The purpose of the (electrical) repulsion equations in many traditional 
force-directed graph drawing algorithms is to spread the vertices and thus 
provide a good visualization.  Since our block objects have a prescribed height 
and width, they require a different repulsion model.  In the final solution blocks 
cannot overlap.  However, we do not require (or want) excess space between 
blocks.  Thus, there should be very little repulsion between non-overlapping 
blocks.  Additionally, we need to allow the blocks flexibility to “move through” 
each other to better positions initially, so at the start of a run the repulsion 
between overlapping blocks should allow overlaps, but at the end of the run 
prohibit them.  We achieve this by means of the effective widths and heights of 

the blocks, multiplying each dimension of each block by B R
B
− , where B is a 

global constant and R increments from B to 0 throughout the run..   

The following equation describes the impulse of xu  and yu (the x and y 
coordinates, respectively, of the center point of component u) to change due to 
the influence of a block v whose effective perimeter overlaps that of u, in the 
case that u v u vx x y y− > − : 
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(1.2) 

( ) ( )

( ) ( )

( , )
2

( , )
2 2

u v u v
v u

u v

u v u v u v
v u

u v u v

AEW u v x x x x
x

x x

y y AEW u v x x y y
y

x x y y

− − −⎛ ⎞
∆ = ⎜ ⎟ −⎝ ⎠

− − − −⎛ ⎞
∆ = ⎜ ⎟− −⎝ ⎠

 

where ( , )AEW u v  is the average of the effective widths of blocks u and v.  
Analogous equations apply if u v u vx x y y− < − . 

We sum over all blocks v whose effective perimeter overlaps that of u, to 
get the total changes x∆  and y∆ , and then set new oldx x x= + ∆  and 

new oldy y y= + ∆ . 

The motivation for the non-symmetric equations for ( )v ux∆  and ( )v uy∆  
comes from wanting to move overlapping blocks so that their effective 
perimeters just abut, but to do so in the most effective of the vertical or 
horizontal directions, while still moving a proportionally lesser amount in the 
other direction.  I.e., we favor one direction over the other, but not completely.  
The repulsion is still proportional to the amount of overlap between the two 
blocks, so the greater the overlap, the greater the repulsion.   

In some runs we set the size of a bounding rectangle representing the fixed 
chip area in which we want the components to reside.  If part or all of a 
component is outside the bounding box we apply a repulsion force to push it in 
towards the center.   

 
Pressure Responsive Blocks 

A unique aspect of the floorplanning problem is that the blocks may be 
reshaped as long as their areas remain constant and their aspect ratios stay 
within given bounds.  Intuitively, this flexibility should lead to better 
floorplanning solutions than might be possible with rigid blocks.  The challenge 
is finding a way to leverage this advantage.  In our model, we view the blocks as 
being compressed both horizontally and vertically by overlapping neighboring 
blocks as the system converges toward a solution.  Within the physical system 
model, it seems reasonable that a block would adjust its shape to equalize these 
pressures, and this is the basis of our approach. 

  For a block u we determine the maximum horizontal and the maximum 
vertical penetrations by any blocks that overlap it.  If the maximum horizontal 
and vertical penetrations come from distinct overlapping neighbors, we reshape 
the block to equalize these penetrations, as in Figure 6.  In the case that the 
maximum penetrations come from a single neighbor, as in Figure 7, we 
compress the block only in that direction.  In any case, we do not want to 
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decrease the width (height) if the horizontal (vertical) penetration is greater than 
half the width (height), since such an overlap is likely to be better handled by 
either changing the shape of the overlapping block or by the action of the 
repulsion forces.  Thus, we only consider penetrations into less than half the 
height or width of a block. 

 
 

 

 
 

 

When the maximum horizontal and vertical overlaps are contributed by two 
different blocks, v and w, then our goal is to equalize the horizontal and vertical 
penetration pressures in equations (1.3) and (1.4).   

 

(1.3) | |
2

u v
u v

width widthhorizontal penetration x x+⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 

(1.4) | |
2

u w
u w

height heightvertical penetration y y+⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. 

u u 

Figure 6.  Block u 
reshaping to 
equalize pressures. 

u u 

Figure 7. Block u 
responding to maximum 
penetrations by a single 
neighbor.  The 
neighboring block will 
also resize, eliminating 
the remaining half of the 
penetration, leaving no 
overlap. 
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Here, ( ),i ix y  are the coordinates of the center point of block i. 

 We set these penetration values equal and use of the fixed area of u with  
area = width*height to solve for the new width of u. 

   

(1.5) 
2

| | | | *
2 2 2 2

u v w u
u v u w u

width width height Areax x y y width⎛ ⎞− + − − − + − −⎜ ⎟
⎝ ⎠

 

This equation has exactly one positive root, corresponding to the width of a 
rectangle shaped to equalize penetration.  If this value lies between the 
minimum and maximum allowed value of the width, we set the equilibrium 
width of u to this value.  Otherwise, we set the width to whichever of the 
minimum or maximum allowed width is closest to this value. 

In the case that the maximum penetrations come from a single neighbor, we 
react to the smaller of the penetration directions to minimize the resulting 
change in shape.  If the smaller penetration is horizontal, we subtract half the 
penetration distance from the old width of u to determine the equilibrium width, 
and use the fixed area to determine the corresponding height.  Again, this is only 
if the resulting equilibrium width is within the allowed range, otherwise we set 
the equilibrium width to the minimum allowed width.  We follow the analogous 
process if the smaller penetration is vertical.  We adjust the block by only half 
the overlap amount since the neighboring block will also be adjusted by at least 
as much when we compute its pressure equations.   

As with the spring and repulsion equations, we incorporate the temperature 
into this scheme in order to prevent oscillation and ensure the termination of the 
algorithm.  Thus, we set the new width of the block to be a convex combination 
of the old width and the equilibrium width we have just computed.  As the 
temperature of the vertex goes to zero as the algorithm progresses, the weight 
placed on the old width will increase. 

(1.6) 1 * *u uT TnewWidth oldWidth equilibriumWidth
T T

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,  

where as before, Tu is the temperature of component u, and T is a global 
maximum temperature. 
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Experimental Results 

 
Our first example is a four by four grid of uniformly sized rectangles with 

randomized initial positions.  Figures 8-11 show the progression of the 
algorithm.  Figure 8 shows the initial random positions of the blocks.  Figure 9 
demonstrates how the spring forces dominate in the early part of a run.  Figure 
10 illustrates the progressive effect of the repulsion forces and pressure 
equalizations.  Figure 11 gives the final result.   

Note that the rectangles in Figure 11 are narrower than the initial rectangles 
in Figure 8.  This results from the algorithm striking a balance between the 
conflicting objectives of minimizing the total sum of edge lengths and 
respecting equal spring tensions on the individual edges (shorter overall edge 
length is possible, but at the expense of one or more disproportionately long 
edges).  

 

 
 
 
 
 
 
 
 

Figure 8. 4x4 grid with 
randomized block 
positions. 
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Figure 9.  Spring Forces 
dominate early in the run, 
and blocks pass through one 
another. 

Figure 10.  Effect of 
repulsion and penetration 
pressures. 
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Figures 12 and 13 show the initial and final positions for a representative 

floorplanning example that incorporates disparately sized blocks, bounding box, 
perimeter pins, and signal claws.  Future work includes modifying pressure 
equalization equations for the bounding box. 
 

 
Figure 12.  Floorplan blocks in initial (randomized) positions. 

 
 

Figure 11.  Final result for  
the 4x4 grid. 
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Figure 13.  Floorplanning final position. 
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