
 Page 1 of 16 Floorplanning

Principles and Preliminary Results for Force-Directed
Floorplanning with Malleable Blocks

Joanna A. Ellis-Monaghan
Department of Mathematics

St. Michael’s College
Colchester, VT 05439

Paul Gutwin
Cadence Design Systems

San Jose, CA 95134

Jamey Lewis
St. Michael’s College
Colchester, VT 05439

Greta M. Pangborn
Department of Computer Science

St. Michael’s College
Colchester, VT 05439

Abstract

We apply force-directed graph drawing techniques to the
floorplanning process of computer chip design, which is
essentially a problem of fitting interconnected rectangles into
a prescribed region without overlap. We adapt the force-
directed graph drawing techniques to accommodate the
rectangular vertices representing chip components by
developing a physical model that allows the components to
‘pass through’ each other and to adjust their aspect ratios as
needed while approaching a solution. We provide the
underlying mathematics and some preliminary output from a
prototype program based on our heuristics.

Key words: Floorplanning, netlist layout, spring embedding,
force-directed, graph drawing, geometric graph theory,
geometric visualization, routing, wiring, placement.

Introduction

A major component of computer chip design consists of generating a netlist
layout, i.e. determining where to place the gates (functional elements) and how
to route the wires (connections between gates) when manufacturing a chip. We
present a physically motivated graph theoretical model for floorplanning, an
early step in this process. During the physical design of the chip, the
floorplanning step determines a rough high-level grouping and placement of
related gates within the chip area. We assume the first part, grouping related
gates into larger blocks with fixed area, has been accomplished, and consider the
question of arranging the interconnected blocks into a fixed rectangular region
(the chip area).

 Page 2 of 16 Floorplanning

A netlist is the logical description of the function(s) of a computer chip.
The netlist describes functional elements (often basic Boolean operators like
AND and NOT) and the interconnections between them. It specifies the pins,
the partition of the pins into operating units of fixed size called gates, a second
partition of the pins corresponding to interconnections or signals (which
translate physically to wires), and lastly, for each pair of pins a maximum delay,
represented by limits on the lengths of the wires.

Given a netlist, the goal is to design a layout that provides a geometric
realization of the logical circuit from which the chip is actually manufactured.
For large chips, the layout process currently consists of three separate but
closely related problems. The first is floorplanning, where a floorplan is a rough
high-level grouping and placement of related gates within the chip area. The
floorplan can be viewed as a rough map of where major subsections of the
netlist should be placed relative to the chip edge for connection to the “outside
world”, and relative to each other, for performance reasons. The second is the
specific placement of the gates on the placement (bottommost) layer so that the
gates do not overlap. The gates are placed in as compact a fashion as possible,
and the placement minimizes the distance between gates connected together by
wires. The third is a rectilinear routing of the wires in the wiring space
(successive layers above the gate placement layer providing alternating
horizontal and vertical channels in which to place wires), so that the distances
between every pair of pins in the same signal are less than their delays and so
that the set of wires is pair-wise disjoint (topologically). See Figures 1 and 2.
Since many aspects of these processes are known to be NP-Hard, the overall
problem realistically becomes finding reasonable heuristics for generating good
layouts. A comprehensive introduction to chip design is given in [Len90], and
an overview of graph theoretic techniques in network design can be found in
[Cac89].

The placement and wiring problems are very closely connected, as a poor
placement can dramatically affect the difficulty in finding a satisfactory routing
solution. The floorplanning step provides global guidance for the placement and
routing steps, anticipating the challenges facing the placement and wiring
algorithms. Thus, a high quality floorplan can be very effective in reducing the
difficulty of the placement and wiring challenges. However, as the floorplan
must anticipate many aspects of the detailed implementation, generating a
floorplan (especially by hand) can be very time consuming.

Due to the highly competitive nature of the microelectronics industry, there
is strong interest in heuristics that may shorten the chip design cycle by
effectively automating the floorplannning process, and improving the floorplan
quality. Heuristics that better integrate the three processes of floorplanning,
placement, and routing, have recently led to improvements in the layout process.
This approach has been taken in [CCPY00], one of the trailblazers in the
relatively new idea of considering the signal delays during the floorplanning

 Page 3 of 16 Floorplanning

process. By moving optimization techniques usually not implemented until the
routing stage into the floorplanning process, they were able to achieve
significant improvement in delay reduction for their test case. Similarly,
[VC04], [MTB00], [CCPY00] and [EJ98] have achieved notable improvements
in automated layout by using force-directed methods.

However, one of the critical considerations involved in using force-directed

methods is preventing overlap of the blocks. The novelty of our approach lies in
our handling of preventing block overlap and reshaping blocks dynamically as
the system nears a solution. As in other recent force-directed layout algorithms,
we model signal delays with spring forces along edges, thus simultaneously
addressing both routing and placement in the floorplanning process. However,
we considerably modify force-directed graph drawing techniques by developing

Figure 2. The wiring space,
showing the placement layer
on the bottom and two wiring
layers above.

Gate Pin Wire

Figure 1. Expanded
view of chip
components (gates
actually abut, with wires
on metal layers above
the gates).

 Page 4 of 16 Floorplanning

a physical model that allows the vertex blocks to ‘pass through’ each other and
to adjust aspect ratios as needed while approaching a solution.

A Force-Directed Floorplanning Approach

 The floorplanning phase uses the logical design of the chip to grossly
partition the netlist into about ten to fifty blocks (see Figure 3). Here we see a
tree denoting the major sub-blocks of the total netlist (CHIP_TOP). Each major
sub-block may contain simply gate level elements (e.g. MAC), or other sub-
blocks (e.g. DSP) or both sub-blocks and gates (not shown). Each of these sub-
blocks will have fixed area, since each contains a given number of individual
gates (transiently), each with fixed physical dimension. However, the aspect
ratios of these blocks are malleable as long as the area stays constant and the
rectangle aspect ratios stay within given bounds. The connections among the
blocks derive from the gates they contain, and thus the blocks are typically
highly interconnected. Figure 4 shows a potential floorplan of the netlist in
Figure 3. Note that not every level of the hierarchy in the netlist tree is
represented in the floorplan – the choice of which sub-block in the hierarchy to
plan for in the floorplan depends on many variables, and is outside the scope of
our discussion. We assume that a good selection of the sub-blocks has been
provided for the floorplan.

Figure 3. Grouping of components in the logic hierarchy of the netlist.

CACHE

CHIP_TOP

MAC DSP MEM_CTL

MEM LOGIC

ALU DISPACC

 Page 5 of 16 Floorplanning

Figure 4. A floorplan (interconnections not shown).

Graphs and hypergraphs are natural mathematical objects for modeling
netlists during the different stages of the layout process. During the
floorplanning stage, the nodes of the graph represent the blocks and the edges
the connections between blocks implied by the wires. Eades [E84] first
suggested a spring embedding algorithm in which the vertices and edges are
veiwed as masses and springs and thus subjected to physical force laws modeled
on Hooke’s law and electrical repulsion equations. The algorithm calculates the
forces acting on each mass and adjusts each node’s position accordingly, then
repeats this process iteratively. The system as a whole eventually stabilizes in a
configuration that minimizes the energy of the springs (at least locally).

This approach has been explored by [VC04], [MTB00], [CCPY00] and
[EJ98] for various aspects of netlist layout. However, the difficulty comes from
the fact that for floorplanning, as in other layout processes, the nodes have
physical dimensions and may not overlap. This usually prevents the nodes from
being able to occupy the position determined by a simple spring embedding
algorithm. Various approaches, from bin packing in [MTB00] to congestion-
based repulsive forces in [EJ98], have been used to address the problem of
preventing overlapping. We have chosen to work directly with the blocks as
physical objects, in part because of the need for a floorplanning model to
incorporate the malleability of these floorplan blocks.

In addition to the blocks, which have an area, our model includes two other
types of vertices, both of which are dimensionless. One type represents the

MEM_CTL

LOGIC

CACHE ACC

MAC

 Page 6 of 16 Floorplanning

signals among the blocks. These interconnections among the blocks are actually
hyperedges, involving sets of blocks rather than simply pairs. As do, for
example [MBT00] and [VC04], we model these hyperedges by claws (K1,n
graphs), creating an artificial vertex for each claw, as in Figure 5. Like [VC04],
we use cliques instead of claws for hyperedges of size two or three to reduce the
number of computations. The other kind of vertex occurs along the perimeter of
the layout area and represents a connection between a block and the edge of the
chip.

As in general spring embedding algorithms, at the core of our algorithm is

an iterative process that repeatedly computes attractive and repulsive forces.
Our use of both local and global temperatures to control oscillation and force the
system to converge to a solution, as well as our spring force computations, are
fairly standard. However, we modify the repulsive forces between blocks in
three ways. First, the blocks repel from a rectangular perimeter rather than a
dimensionless point, and only repel to this perimeter rather than simply using an
inverse square law. Second, this repelling perimeter grows outward from the
center of the block as the algorithm progresses, beginning very small, and then
eventually encompassing the given area of the block. This allows the blocks to
pass through one another other early in the algorithm as the system grossly
positions the components, but prevents blocks from overlapping as the system
nears stability. We refer to this perimeter as the effective width and height of the
block. Thirdly, we compute boundary pressures (depth of penetration by
neighboring blocks) for each block, and then adjust the aspect ratio of the block
to equalize these pressures, thus allowing blocks to find good shapes as well as
positions in the final floorplan.

Since we assume the gates have previously been grouped into blocks, our
input consists of:
• the rectangular chip layout area,
• the given blocks of related chip components,
• the areas of these blocks,
• information about how the blocks are connected among themselves and to

the perimeter of the layout area,
• delay constraints on the interconnections.

Figure 5. A signal (dotted
lines) modeled by a claw
on an artificial vertex.

 Page 7 of 16 Floorplanning

 The principal components of our algorithm, discussed in detail below, are:
• the temperature,
• the spring equations on the signal edges,
• the repulsion equations on the blocks,
• the pressure equalization equations to reshape overlapping blocks.

The output is a floorplan, that is an arrangement of the blocks in the layout
area so that the blocks do not overlap and so that connected blocks with short
delays are placed near one another.

Temperature

Temperature works both locally and globally to ensure termination of
the algorithm. We increase or decrease a temperature variable associated to
each individual block or vertex based on its prior movement. We detect
oscillation by comparing the direction of the vertex’s movement with its last
recorded movement direction. If the difference is greater than 90 degrees, we
decrease the temperature of the vertex and slow its movement to damp any
oscillation. Otherwise, we assume the vertex is moving toward a better position,
so we increase its temperature and hence speed its movement toward that
position. We also globally decrement the temperature variables throughout a
run, slowly cooling the system as a whole, and thus forcing a final stable state.

Spring Forces

We apply attractive forces modeled on spring equations along the edges
representing connections between components, where a component may be a
block or one of the two types of special vertices. Given an edge (u, v) between a
component u with center (),u ux y and a component v with center (),v vx y ,
equation (1.1) describes the impulse of xu (the x-coordinate of the center point of
component u) to change due to the influence of edge (u,v):

(1.1) () v u u
uv uv uv

uv

x x TS W d l
d T
−

⋅ − ⋅ ⋅ , where

• S is a global spring stiffness parameter,
• Wuv is an edge springiness parameter determined by the timing constraints in

the netlist,
• duv is the Euclidean distance between the centers,

 Page 8 of 16 Floorplanning

• luv is the ideal length of the spring between u and v, determined by the timing
constraints in the netlist and the effective dimensions of the blocks,

• Tu is the local temperature of u,
• T is a global maximum temperature.

We then sum over all edges incident with u to find the new value of xu and
compute the new value of yu analogously, thus setting the new position of
component u for the next iteration. We handle the special case when u and v are
both blocks a little differently. In the case that the blocks are offset more
horizontally, we replace duv by the difference in the x coordinates, and luv by the
average effective width, and simply increment vertically by half the difference
in the y coordinates, treating the case of greater vertical offset analogously.

Determining reasonable values of Wuv and luv for each edge from the raw
netlist data is a separate and very challenging problem in its own right.
Therefore, following common practice, we currently set these values globally,
with SWuv always equal to one and with luv equal one of the average effective
height or width of u and v, or else very near zero. We then simply seek to
minimize the total wire lengths in the final solution. We retain the parameter S
as a control variable for future implementation combining the current work with
a genetic algorithm.

Repulsion Forces Among Blocks

The purpose of the (electrical) repulsion equations in many traditional
force-directed graph drawing algorithms is to spread the vertices and thus
provide a good visualization. Since our block objects have a prescribed height
and width, they require a different repulsion model. In the final solution blocks
cannot overlap. However, we do not require (or want) excess space between
blocks. Thus, there should be very little repulsion between non-overlapping
blocks. Additionally, we need to allow the blocks flexibility to “move through”
each other to better positions initially, so at the start of a run the repulsion
between overlapping blocks should allow overlaps, but at the end of the run
prohibit them. We achieve this by means of the effective widths and heights of

the blocks, multiplying each dimension of each block by B R
B
− , where B is a

global constant and R increments from B to 0 throughout the run..

The following equation describes the impulse of xu and yu (the x and y
coordinates, respectively, of the center point of component u) to change due to
the influence of a block v whose effective perimeter overlaps that of u, in the
case that u v u vx x y y− > − :

 Page 9 of 16 Floorplanning

(1.2)

() ()

() ()

(,)
2

(,)
2 2

u v u v
v u

u v

u v u v u v
v u

u v u v

AEW u v x x x x
x

x x

y y AEW u v x x y y
y

x x y y

− − −⎛ ⎞
∆ = ⎜ ⎟ −⎝ ⎠

− − − −⎛ ⎞
∆ = ⎜ ⎟− −⎝ ⎠

where (,)AEW u v is the average of the effective widths of blocks u and v.
Analogous equations apply if u v u vx x y y− < − .

We sum over all blocks v whose effective perimeter overlaps that of u, to
get the total changes x∆ and y∆ , and then set new oldx x x= + ∆ and

new oldy y y= + ∆ .

The motivation for the non-symmetric equations for ()v ux∆ and ()v uy∆
comes from wanting to move overlapping blocks so that their effective
perimeters just abut, but to do so in the most effective of the vertical or
horizontal directions, while still moving a proportionally lesser amount in the
other direction. I.e., we favor one direction over the other, but not completely.
The repulsion is still proportional to the amount of overlap between the two
blocks, so the greater the overlap, the greater the repulsion.

In some runs we set the size of a bounding rectangle representing the fixed
chip area in which we want the components to reside. If part or all of a
component is outside the bounding box we apply a repulsion force to push it in
towards the center.

Pressure Responsive Blocks

A unique aspect of the floorplanning problem is that the blocks may be
reshaped as long as their areas remain constant and their aspect ratios stay
within given bounds. Intuitively, this flexibility should lead to better
floorplanning solutions than might be possible with rigid blocks. The challenge
is finding a way to leverage this advantage. In our model, we view the blocks as
being compressed both horizontally and vertically by overlapping neighboring
blocks as the system converges toward a solution. Within the physical system
model, it seems reasonable that a block would adjust its shape to equalize these
pressures, and this is the basis of our approach.

 For a block u we determine the maximum horizontal and the maximum
vertical penetrations by any blocks that overlap it. If the maximum horizontal
and vertical penetrations come from distinct overlapping neighbors, we reshape
the block to equalize these penetrations, as in Figure 6. In the case that the
maximum penetrations come from a single neighbor, as in Figure 7, we
compress the block only in that direction. In any case, we do not want to

 Page 10 of 16 Floorplanning

decrease the width (height) if the horizontal (vertical) penetration is greater than
half the width (height), since such an overlap is likely to be better handled by
either changing the shape of the overlapping block or by the action of the
repulsion forces. Thus, we only consider penetrations into less than half the
height or width of a block.

When the maximum horizontal and vertical overlaps are contributed by two
different blocks, v and w, then our goal is to equalize the horizontal and vertical
penetration pressures in equations (1.3) and (1.4).

(1.3) | |
2

u v
u v

width widthhorizontal penetration x x+⎛ ⎞= − −⎜ ⎟
⎝ ⎠

(1.4) | |
2

u w
u w

height heightvertical penetration y y+⎛ ⎞= − −⎜ ⎟
⎝ ⎠

.

u u

Figure 6. Block u
reshaping to
equalize pressures.

u u

Figure 7. Block u
responding to maximum
penetrations by a single
neighbor. The
neighboring block will
also resize, eliminating
the remaining half of the
penetration, leaving no
overlap.

 Page 11 of 16 Floorplanning

Here, (),i ix y are the coordinates of the center point of block i.

 We set these penetration values equal and use of the fixed area of u with
area = width*height to solve for the new width of u.

(1.5)
2

| | | | *
2 2 2 2

u v w u
u v u w u

width width height Areax x y y width⎛ ⎞− + − − − + − −⎜ ⎟
⎝ ⎠

This equation has exactly one positive root, corresponding to the width of a
rectangle shaped to equalize penetration. If this value lies between the
minimum and maximum allowed value of the width, we set the equilibrium
width of u to this value. Otherwise, we set the width to whichever of the
minimum or maximum allowed width is closest to this value.

In the case that the maximum penetrations come from a single neighbor, we
react to the smaller of the penetration directions to minimize the resulting
change in shape. If the smaller penetration is horizontal, we subtract half the
penetration distance from the old width of u to determine the equilibrium width,
and use the fixed area to determine the corresponding height. Again, this is only
if the resulting equilibrium width is within the allowed range, otherwise we set
the equilibrium width to the minimum allowed width. We follow the analogous
process if the smaller penetration is vertical. We adjust the block by only half
the overlap amount since the neighboring block will also be adjusted by at least
as much when we compute its pressure equations.

As with the spring and repulsion equations, we incorporate the temperature
into this scheme in order to prevent oscillation and ensure the termination of the
algorithm. Thus, we set the new width of the block to be a convex combination
of the old width and the equilibrium width we have just computed. As the
temperature of the vertex goes to zero as the algorithm progresses, the weight
placed on the old width will increase.

(1.6) 1 * *u uT TnewWidth oldWidth equilibriumWidth
T T

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,

where as before, Tu is the temperature of component u, and T is a global
maximum temperature.

 Page 12 of 16 Floorplanning

Experimental Results

Our first example is a four by four grid of uniformly sized rectangles with

randomized initial positions. Figures 8-11 show the progression of the
algorithm. Figure 8 shows the initial random positions of the blocks. Figure 9
demonstrates how the spring forces dominate in the early part of a run. Figure
10 illustrates the progressive effect of the repulsion forces and pressure
equalizations. Figure 11 gives the final result.

Note that the rectangles in Figure 11 are narrower than the initial rectangles
in Figure 8. This results from the algorithm striking a balance between the
conflicting objectives of minimizing the total sum of edge lengths and
respecting equal spring tensions on the individual edges (shorter overall edge
length is possible, but at the expense of one or more disproportionately long
edges).

Figure 8. 4x4 grid with
randomized block
positions.

 Page 13 of 16 Floorplanning

Figure 9. Spring Forces
dominate early in the run,
and blocks pass through one
another.

Figure 10. Effect of
repulsion and penetration
pressures.

 Page 14 of 16 Floorplanning

Figures 12 and 13 show the initial and final positions for a representative

floorplanning example that incorporates disparately sized blocks, bounding box,
perimeter pins, and signal claws. Future work includes modifying pressure
equalization equations for the bounding box.

Figure 12. Floorplan blocks in initial (randomized) positions.

Figure 11. Final result for
the 4x4 grid.

 Page 15 of 16 Floorplanning

Figure 13. Floorplanning final position.

Acknowledgements

Portions of this work were supported by VT EPSCoR under grant NSF EPS

0236976 and by NASA under Training Grant NGT5-40110 to the Vermont
Space Grant Consortium.

Bibliography

[Cac89] L. CACCETAA, Graph theory in network design and analysis,
Recent Studies in Graph Theory, V.R. Kulli, ed. Vishwa
International Publications (1989) pp 29-63.

[CCPY00] C.-C. CHANG, J. CONG, D. Z. PAN, X. YUAN, Interconnect-
driven floorplanning with fast global wiring planning and
optimization, Proceedings SRC TechCon Conference,
September 21-23, Phoenix, 2000.

 Page 16 of 16 Floorplanning

[E84] P. Eades, "A Heuristic for Graph Drawing," Congressus
Numerantium, 42, 149-160, 1984.

[EJ98] H. EISENMANN, F.M. JOHANNES, Generic global placement
and floorplanning, Proc. 35th Annual Conference on Design
Automation Conference, 1998.

[Len90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit

Layout, John Wiley & Sons, 1990.

[MTB00] F. MO, A. TABBARA, R.K. BRAYTON, A force-directed macro-
cell placer, IEEE/ACM International Conference on Computer
Aided Design, November 2000, ICCADOO, Santa Clara.

[VC04] N. VISWANATHAN, C. CHU, FastPlace: Efficient analytical
placement using cell shifting, iterative local refinement and a
hybrid net, ISPD, April 18-21, Phoenix, AZ pp. 26-33.

